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• The finding that substrate stiffness can modulate stem 
cell differentiation, enabling new ways of controlling cell 
phenotypes using physical cues6.

• Advanced chemistries that have enabled more efficient 
and versatile biomaterial conjugations, to achieve precise 
patterning of biomolecules and biomaterials in the presence 
of biological entities7,8.

• Refined delivery mechanisms that enable biochemical cues 
such as growth factors and cytokines to be presented with 
improved bioavailability and bioactivity9,10.

• Increased understanding of the interaction between foreign 
bodies and the body’s immune surveillance system, which 
has promoted rational design of biomaterials to achieve 
mitigated inflammatory responses11,12.

• The development of new biomaterials and scaffolds that has 
led to fabrication of better biomimetic tissues1,13,14.

• Advances in biofabrication technologies including 
programmed self-assembly15,16 and three-dimensional 
(3D) bioprinting17–24, which have allowed generation of 
complex biological structures with integrated vasculature 
and multiple cell or extracellular matrix (ECM) types at 
high spatial resolution.

Advances in cell engineering
Our understanding of how cells can be reprogrammed has 
advanced considerably over the past decade and thus increased 
the available methods to reprogram cells. The landscape of the 
stem cell field has substantially changed since the discovery 
of iPSCs. Adult cells initially were reprogrammed into iPSCs 
by introducing a set of four specific genes encoding critical 
reprogramming factors (Oct4 and Sox2 with either c-Myc and 
Klf4 or Nanog and Lin28)4,5. Inducible pluripotency from many 
types of somatic cells has made autologous cell sources a likely 
solution to many tissue-engineering applications. As iPSCs can 

The aim of tissue engineering is to develop tissue and organ 
substitutes for maintaining, restoring or augmenting functions 
of their injured or diseased counterparts in vivo1,2. We have 
previously described a number of challenges that have hindered 
clinical applications of tissue engineering technology2,3. 
These limitations included a paucity of renewable sources of 
functional cells that are immunologically compatible; a lack of 
appropriate biomaterials with desired mechanical, chemical 
and biological properties; and an inability to generate large, 
vascularized tissues that can easily integrate into the host’s 
circulatory system with the architectural complexity of native 
tissues. Over the past decade, the field of tissue engineering 
has witnessed tremendous progress toward overcoming these 
challenges as a result of our improved understanding of biology, 
materials science, chemistry and engineering strategies, and the 
convergence of these disciplines (Fig. 1 and Box 1).

In this Perspective we focus on improved methodology for 
tissue engineering that has been achieved as a result of progress in 
the following areas (Fig. 2).

• The discovery of methods to generate induced pluripotent 
stem cells (iPSCs), which has paved the way for personalized 
medicine4,5.
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been proposed to improve the compatibility and activity of 
the biomaterials. For example, bioorthogonal click chemistry 
has contributed to substantial improvements in diversity and 
complexity of biomaterial formulations because of its extremely 
high selectivity, versatility, simplicity and yield7,8,38. These organic 
reactions can be conducted in biologically and physiologically 
relevant environments, allowing dynamic patterning of growth 
factors and manipulation of their availability and release kinetics 
in the presence of cells. Early protein delivery systems were based 
on reversible binding to heparin9,39,40. Application of rigorous in 
vitro selection processes and directed evolution10 have facilitated 
the engineering of affinity-mediated release systems using a greater 
diversity of noncovalent forces, such as ionic, hydrophobic, van 
der Waals interactions and hydrogen bonding. The increasingly 
versatile and sophisticated biomolecule delivery systems could 
allow for orchestrated presentation of multiple proteins and growth 
factors in a manner resembling in vivo dynamics.

Physical forces have been used on many occasions in the past 
decade to regulate cell responses. Although early discoveries had 
been based on planar substrates with various stiffness6,41, the 
field has rapidly progressed to the use of 3D matrices to more 
accurately direct lineage specification of stem cells42. Dynamic 
modulation of the matrices through cell-mediated degradation 
revealed that the differentiation of embedded stem cells is 
directed by the generation of localized cellular traction, and that 
this is independent of the overall matrix mechanics43. As with 
biochemical cues, it has been found that stem cells remember 

be derived from patients easily, they potentially enable new 
approaches for personalized medicine, where an individual’s own 
cells may be used to engineer and repair tissues. Furthermore, 
allogeneic iPSCs combined with immunoisolation capsules are 
also promising for use as a versatile source for treating diseases 
such as diabetes (for example, Viacyte, http://viacyte.com/).

Adult stem cell research has yielded several major 
breakthroughs, for example, the homing capability of 
mesenchymal stem cells (MSCs) has been identified as a 
powerful method of inducing tissue regeneration. These cells 
can be engineered to produce a pool of desired growth factors 
and cytokines beneficial for local wound healing or disease 
treatment25–28. Although such phenomenon has been confined 
to preclinical trials, we envision its future clinical translation in 
treating internal wounds and diseases that are not easily accessible 
by conventional strategies in a minimally invasive fashion. New 
adult stem cell sources such as adipose-derived stromal cells29 and 
amniotic-fluid-derived stem cells30 have been established as other 
renewable adult stem cells sources that can be differentiated into 
multiple lineages in a similar manner to MSCs.

Innovative methods of genetic manipulation of cells have 
also been developed, most notable being the clustered regularly 
interspaced short palindromic repeats (CRISPR) technology31–34. 
CRISPR technology allows specific targeting of DNA followed 
by cutting at a precise location to achieve genomic editing of 
mammalian cells with unprecedented ease and accuracy. We 
envision CRISPR technology and its variations to potentially 
change the landscape of personalized tissue engineering in 
the future to promote versatility of cell engineering and tissue 
modulation. Examples include efforts exerted on genetic editing of 
pig organs for potential human transplantation35–37.

Active modulation of cell growth using biomaterials
Evolution of cell sources has demanded the development of 
advanced biomaterials to actively modulate cellular behaviors 
in terms of adhesion, proliferation, migration, differentiation 
and maturation. Over the past decade, advanced chemistries 
using strategies for conjugation of bioactive molecules have 
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Figure 1 | Important advances in tissue engineering.

Cell source

iPSCs

Adult stem
cells

CRISPR-Cas9

Genetic tools

Novel chemistries

Growth factors

Biomechanics

Self assembly 3D printing

Decellularized
organs

Progress in tissue
engineering

E
ng

in
ee

rin
g 

ce
lls

Engineering tissue architecture

Engineering m
aterials

Figure 2 | Summary of tissue engineering progress in the past decade. 
Additional cell sources have become available, including iPSCs and 
adult stem cells, as well as genetic editing tools that enable greater cell 
manipulation. Improved chemistries and growth factor delivery mechanisms, 
as well as advances in understanding biophysical cues on cellular behaviors 
and tissue architecture technologies have contributed to engineering 
tissues of considerably improved structural, compositional and functional 
resemblance to their native counterparts.
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clear that foreign body responses of implanted tissues may also 
be controlled by directing the phenotype of locally residing or 
recruited macrophages49–51. Therefore, harnessing the plasticity 
of macrophage subtypes has been proposed as one of the most 
promising methods to reduce proinflammatory response upon 
the induction of specific signals52,53.

Engineering the architecture of tissue scaffolds
The ability to create tightly controlled 3D architectures for 
tissue engineering has progressed considerably owing to two 
major technologies; programmed modular self-assembly 
and 3D bioprinting. Programmed modular self-assembly 
provides a convenient way to construct sophisticated synthetic 
architectures54,55. Self-organizing structures can be achieved by 
using DNA strands with sequence complementarity that pair 
under appropriate physical conditions56,57. Such a concept has 
been translated to the macroscale, where biomaterial and tissue 
building blocks attached with specially designed programmable 
DNA glues can be induced to assemble across multiple length 
scales spanning from a few hundred micrometers up to 
centimeters15. Similarly, degradable DNA glues were conjugated 
to single cells to achieve programmed tissue assembly, after 
which the DNA linkers can be degraded using DNase to release 
the assembled tissue16. Although the nondegradable DNAs 
facilitate long-term assembly of the biomaterial building blocks 
into desired tissue architectures, the use of degradable DNAs is 
better suited for cases in which the living cells can actively fuse 
into an integral piece after assembly without further need for 
DNA to stabilize the structures.

Biofabrication approaches such as 3D bioprinting, an 
extension from existing 3D printing (i.e., deposition of 
noncellular materials58–60), offer unprecedented versatility to 
manipulate cells and biomolecules (e.g., proteins and ECMs) 
with precise control over composition and spatial distribution to 

past mechanical doses and can undergo either reversible (below 
the threshold) or irreversible (above the threshold) activation 
as a consequence of subsequent mechanical stimulus44. The 
accumulation of mechanobiology knowledge has led to a 
fundamentally different approach to modulate cell behavior 
compared to traditional strategies based on biochemistry.

Another major trend in the past decade has been the increased 
use of immunomodulation of biomaterial-host interactions, 
which is critical to achieve enhanced performance of implanted 
biomaterials. If left unmodulated, inflammatory responses of 
the innate host microenvironment usually initiate a cascade of 
cellular events leading to foreign body reactions that manifest as 
inflammation, formation of giant cells, fibrosis, and eventually 
damage to the implant and the surrounding host tissues45,46. 
Large libraries of formulations have been screened for the 
effect of size and chemistry on host immunity, in an attempt 
to mitigate the response to these formulations as a foreign 
substance. For example, the use of implanted spheres larger 
than 1.5 mm in diameter significantly reduced foreign body 
reactions and fibrosis compared to smaller spheres, and this 
was the case for a broad spectrum of biomaterials, including 
hydrogels, ceramics, metals and plastics, potentially owing to 
a lack of macrophage accumulation on large-sized spheres11. 
Furthermore, several triazole-containing analogs have been 
identified for modification of alginate, which substantially 
abrogated foreign body reactions in rodents and nonhuman 
primates by inhibiting the recognition of such analogs by 
macrophages12. Monocytes and macrophages have an essential 
role during integration of implanted tissues. In inflammation, 
macrophages can be distinguished into two subtypes, the M1 
immune effecter cells that mainly produce proinflammatory 
cytokines and M2 macrophages that are commonly associated 
with an anti-inflammatory response47,48. As the roles of the M2 
macrophages have become better understood, it has become 

BOX 1: GLOSSARY
Biofabrication. Any fabrication process that includes cells and/or bioactive molecules.
Bioprinting. A technique that relies on a motorized dispensing system to achieve fabrication of well-organized biological constructs 
typically involving live cells in three dimensions.
Sacrificial bioprinting. Bioprinting technique in which one biomaterial serves as a template embedded in a secondary material and is 
removed thereafter to construct hollow structures.
Embedded bioprinting. Bioprinting technique in which one biomaterial is directly deposited in a self-healing matrix for fabrication of 
freeform structures.
Bioorthogonal chemistry. Chemical conjugation that can occur in the presence of biological entities.
Mechanobiology. A field of science focusing on how physical forces and mechanics influence biological systems including the cells and 
tissues.
Immunomodulation. Set of approaches to tailor and modify the response of the immune system.
Clustered regularly interspaced short palindromic repeats (CRISPR). A targeted genome-editing tool with extremely high precision 
and efficiency.
Induced pluripotent stem cells (iPSCs). Stem cells generated directly from adult somatic cells by introducing a set of pluripotency-
associated genes into cells, or through chemical reprogramming or protein delivery.
Hydrogel. A network of macromolecular polymers containing a large amount of water.
Decellularized organ. An organ processed to selectively remove its inhabiting cells, leaving only the extracellular matrix scaffold of 
the original organ.
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types and/or stem cells (for example, iPSCs from patients) can 
be subsequently infused to repopulate these decellularized 
organs and render them functional. Using such a strategy, a 
variety of organs have been developed, including the blood 
vessels78–80, heart74,81, lung82,83, liver84,85, kidney86,87, bladder88 
and pancreas89. Although the use of decellularized organs can 
maximally recapitulate the structural complexity of pristine 
organs and potentially their functionality, the limit of donor 
sources posts intrinsic limitations to the widespread application 
of the technology to organ transplant surgery.

Current and future potential applications of tissue 
engineering
Several tissue-engineering products have shown potential for 
clinical application over the past decade. A biomaterial-based 
scaffold termed Neuro-Spinal Scaffold developed by InVivo 
Therapeutics (http://www.invivotherapeutics.com/research-
clinical-development/pipeline/bioengineered-neural-trails), 
could potentially facilitate new neuronal connections for use in 
spinal cord injury90. Humacyte (http://www.humacyte.com) has 
been testing, currently in clinical trials, vascular replacements 
fabricated by growing banked vascular smooth muscle cells on 
porous tubular scaffolds in vitro and decellularizing them91. L-C 
Ligament, a bioresorbable scaffold designed to facilitate regrowth 
of the anterior cruciate ligament (ACL) in the knee also entered 
the clinical trials in 2015 (http://softtissueregeneration.com/
index.php/technology-overview/l-c-ligament). Although many of 
the current acellular products entering the market are inherited 
from earlier eras, successful clinical application of engineered 
tissues has been very limited largely because of the persisting 
challenges in achieving biological functions of cellularized 
constructs and their host compatibility. We anticipate that 
innovations in stem cells, genetic editing, biomaterial engineering, 
immunomodulation and biofabrication together will further boost 
the clinical translation of engineered tissues by tackling the critical 
challenges in the field (Fig. 3).

Aside from tissue substitutes for in vivo transplantation, 
technological advancements in tissue engineering have 
spurred new, unforeseen applications of engineering in 
vitro biomimetic tissue and organ models. These tissue and 
organ models are usually engineered at miniaturized scales 
that recapitulate the biology and physiology of their in vivo 
counterparts, featuring structural and architectural similarity, 
compositional resemblance in cell types and ECM moieties, 
ultimately producing a functional imitation. Such models 
have applications for improving the prediction of human drug 
responses and reducing the need for animal models in research. 
By taking advantage of stem cell technology, it has been shown 
that human iPSCs-derived cerebral organoids could be induced 
to form brain-mimicking structures92 and familial Alzheimer’s 
disease in which amyloid-β and phosphorylated tau proteins are 
expresssed93. Although these examples are highly biologically 
relevant, they alone do not necessarily recapitulate the dynamic 
physiological cues present in the human system.

An alternative approach is the use of organ-on-chip platforms 
that integrate biomimetic organ models with advanced 

recapitulate the fine shape, structure and architecture of native 
tissues17,18,21–24. Since the debut of biofabrication technology 
in the form of cell-laden inkjet printing61,62, development of 
this technology over the past decade has led to its widespread 
use in tissue engineering21,63. A wide variety of biomaterials 
can be used for bioprinting, enabling broad applicability to 
a myriad of tissue types. In particular, sacrificial bioprinting 
has made it possible to produce interconnected vascular 
networks in hydrogel matrices19,20,64–66. Embedded bioprinting 
supported direct fabrication of freeform shapes by preventing 
them from collapsing during the bioink deposition process 
due to gravity67–69. Bioprinters equipped with multiple nozzles 
extruding different biomaterials boosted the capacity to build 
complex tissues featuring spatial heterogeneity of cells and 
matrix compositions18,24,70. More recently, smart biomaterials 
that can evolve their shapes as a function of time in a prescribed 
manner upon externally applied stimuli such as humidity, pH 
and temperature, have been integrated to establish a new strategy 
termed four-dimensional (4D) bioprinting71,72. The unique 
extra dimension of time conferred by 4D bioprinting promises 
to bring dynamic temporal control in addition to the spatial 
hierarchy into fabricated tissues.

Natural tissue structures have also gained popularity as a 
source of scaffolds—for example, the use of decellularized 
tissues73. However, use of decellularized whole organs and their 
applications in whole-organ engineering were only developed 
about a decade ago74–77. In this approach, isolated donor 
organs are perfused with detergents to remove all cellular and 
immunogenic species while preserving the underlying ECM 
and potentially embedded vascular network. Desired cell 

Clinical translation

Organs-on-a-chip

Biorobotics/
bioactuators

Engineered meat

Engineered leather

Cryopreservation
and fast delivery

Future applications
and challenges

Figure 3 | Future and challenges of tissue engineering: clinical translation 
of tissue engineering products, organs-on-a-chip and disease modeling, 
biorobotics/bioactuators, engineered meat and leather, and cryopreservation 
and fast delivery.
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biochemical and biomechanical cues that can achieve orchestrated 
dynamic presentation over the process of tissue maturation 
and regeneration. Through integration of complementary 
expertise using interdisciplinary approaches, we anticipate more 
developments in these areas to come in the next decade to advance 
this exciting field.
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